Robot Battery Rundown Test Plan

PackBot Modernization Project

Ty Valascho, Dan Ryan 10/5/2012

A test plan to measure run down time of a battery-powered robot under several repeatable conditions.

including suggestions for reducing	ompleting and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding an DMB control number.	arters Services, Directorate for Inf	formation Operations and Reports	, 1215 Jefferson Davis	Highway, Suite 1204, Arlington	
1. REPORT DATE		2. REPORT TYPE		3. DATES COVE	RED	
05 OCT 2012		Technical Report		29-09-2012 to 05-10-2010		
4. TITLE AND SUBTITLE Robot Battery Rundown Test Plan PackBot Modernization Project				5a. CONTRACT NUMBER		
			5b. GRANT NUMBER			
				5c. PROGRAM E	LEMENT NUMBER	
6. AUTHOR(S)				5d. PROJECT NUMBER		
Ty Valascho; Daniel Ryan			5e. TASK NUMBER			
					5f. WORK UNIT NUMBER	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) U.S. Army TARDEC,6501 East Eleven Mile Rd,Warren,Mi,48397-5000				8. PERFORMING ORGANIZATION REPORT NUMBER #23399		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U.S. Army TARDEC, 6501 East Eleven Mile Rd, Warren, Mi, 48397-5000				10. SPONSOR/MONITOR'S ACRONYM(S) TARDEC		
				11. SPONSOR/M NUMBER(S) #23399	ONITOR'S REPORT	
12. DISTRIBUTION/AVAIL Approved for publ	ABILITY STATEMENT	ion unlimited				
	otes and/or findings con fficial Department of					
-	ure the amount of t tteries, under a var		-	nd functional	using two	
15. SUBJECT TERMS						
16. SECURITY CLASSIFICATION OF:			17. LIMITATION OF ABSTRACT	18. NUMBER	19a. NAME OF	
a. REPORT	b. ABSTRACT	c. THIS PAGE	Public Release	OF PAGES 10	RESPONSIBLE PERSON	

unclassified

Report Documentation Page

unclassified

unclassified

Form Approved OMB No. 0704-0188

Objectives

This test is intended to measure the amount of time a robot remains powered and functional using two standard Li-lon batteries, under a variety of operating conditions.

Requirements

Special equipment

- Loading device to simulate operation of the Unit Under Test (UUT) at grade while ambient temperature is kept at specific temperatures: robot dynamometer, load rig, or treadmill
- Temperature measurement device

Site requirements

None

Procedure

3 trials of each the following tests must be performed with valid completion.

Idle Test, -20 C

- 1. Measure and record State of Charge (SOC) of 2 fully charged BB-2590 batteries (NSN 6140-01-490-4316, 6.8 Ah @ 28.8 V).
- 2. Place UUT and the 2 batteries inside the temperature chamber. The batteries are not to be installed in the UUT at this time.
- 3. Install ambient temperature sensor inside the chamber to measure inside air temperature
- 4. Monitor and log the power bus voltage of the platform. Rate of datalogging should be at least 0.1 Hz.
- 5. Bring temperature of chamber to -20 C and soak UUT and batteries for 2 hours.
- 6. Begin logging of data, monitoring power bus voltage.
- 7. Power on the UUT's Operator Control Unit (OCU). Verify OCU is completely powered on before proceeding to the next step.
- 8. Open the chamber for no more than 1-minute maximum; install batteries into the UUT and power on UUT.
- 9. Connect and verify communication to the UUT
- 10. Test is completed when robot shuts off due to loss of battery power. Any other end of test results in an invalid test.
- 11. If a valid test, record the amount of time from the start of the test until the robot shut off. Also record the SOC of the two batteries.
- 12. If an invalid test, note the error or conditions which resulted in the end of test.

Idle Test, +25 C

- 1. Measure and record State of Charge on 2 fully charged BB-2590 batteries (NSN 6140-01-490-4316, 6.8 Ah @ 28.8 V).
- 2. Place UUT and the 2 batteries inside the temperature chamber. The batteries are not to be installed in the UUT at this time.
- 3. Install ambient temperature sensor inside the chamber to measure inside air temperature. Rate of datalogging should be at least 0.1 Hz.
- 4. Monitor and log the power bus voltage of the platform.
- 5. Bring temperature of chamber to +25 C and soak UUT and batteries for 2 hours.
- 6. Begin logging of data, monitoring power bus voltage.
- 7. Power on the UUT's Operator Control Unit (OCU). Verify OCU is completely powered on before proceeding to the next step.
- 8. Open the chamber for no more than 1-minute maximum; install batteries into the UUT and power on UUT.
- 9. Connect and verify communication to the UUT
- 10. Test is completed when robot shuts off due to loss of battery power. Any other end of test results in an invalid test.
- 11. If a valid test, record the amount of time from the start of the test until the robot shut off. Also record the SOC of the two batteries.
- 12. If an invalid test, note the error or conditions which resulted in the end of test.

Idle Test, +50 C

- 1. Measure and record State of Charge on 2 fully charged BB-2590 batteries (NSN 6140-01-490-4316, 6.8 Ah @ 28.8 V).
- 2. Place UUT and the 2 batteries inside the temperature chamber. The batteries are not to be installed in the UUT at this time.
- 3. Install ambient temperature sensor inside the chamber to measure inside air temperature. Rate of datalogging should be at least 0.1 Hz.
- 4. Monitor and log the power bus voltage of the platform.
- 5. Bring temperature of chamber to +50 C and soak UUT and batteries for 2 hours.
- 6. Begin logging of data, monitoring power bus voltage.
- 7. Power on the UUT's Operator Control Unit (OCU). Verify OCU is completely powered on before proceeding to the next step.
- 8. Open the chamber for no more than 1-minute maximum; install batteries into the UUT and power on UUT.
- 9. Connect and verify communication to the UUT
- 10. Test is completed when robot shuts off due to loss of battery power. Any other end of test results in an invalid test.
- 11. If a valid test, record the amount of time from the start of the test until the robot shut off. Also record the SOC of the two batteries.
- 12. If an invalid test, note the error or conditions which resulted in the end of test.

Maximum Normal Speed Test, -20 C

- 1. Measure and record State of Charge on 2 fully charged BB-2590 batteries (NSN 6140-01-490-4316, 6.8 Ah @ 28.8 V).
- 2. Place loading device, UUT and the 2 batteries inside the temperature chamber. The batteries are not to be installed in the UUT at this time.
- 3. Install ambient temperature sensor inside the chamber to measure inside air temperature. Rate of datalogging should be at least 0.1 Hz.
- 4. Monitor and log the power bus voltage of the platform.
- 5. Bring temperature of chamber to -20 C and soak UUT and batteries for 2 hours.
- 6. Begin logging of data, monitoring power bus voltage.
- 7. Power on the UUT's Operator Control Unit (OCU). Verify OCU is completely powered on before proceeding to the next step.
- 8. Open the chamber for no more than 1-minute maximum; install batteries into the UUT and power on UUT.
- 9. Connect and verify communication to the UUT
- 10. Hold the robot speed at 100% maximum platform speed in Normal mode on level ground. This speed will be kept constant for the entire test.
- 11. Test is completed when robot shuts off due to loss of battery power. Any other end of test results in an invalid test.
- 12. If a valid test, record the amount of time from the start of the test until the robot shut off. Also record the SOC of the two batteries.
- 13. If an invalid test, note the error or conditions which resulted in the end of test.

Maximum Normal Speed Test, +25 C

- 1. Measure and record State of Charge on 2 fully charged BB-2590 batteries (NSN 6140-01-490-4316, 6.8 Ah @ 28.8 V).
- 2. Place loading device, UUT and the 2 batteries inside the temperature chamber. The batteries are not to be installed in the UUT at this time.
- 3. Install ambient temperature sensor inside the chamber to measure inside air temperature. Rate of datalogging should be at least 0.1 Hz.
- 4. Monitor and log the power bus voltage of the platform.
- 5. Bring temperature of chamber to +25 C and soak UUT and batteries for 2 hours.
- 6. Begin logging of data, monitoring power bus voltage.
- 7. Power on the UUT's Operator Control Unit (OCU). Verify OCU is completely powered on before proceeding to the next step.
- 8. Open the chamber for no more than 1-minute maximum; install batteries into the UUT and power on UUT.
- 9. Connect and verify communication to the UUT
- 10. Hold the robot speed at 100% maximum platform speed in Normal mode on level ground. This speed will be kept constant for the entire test.
- 11. Test is completed when robot shuts off due to loss of battery power. Any other end of test results in an invalid test.

- 12. If a valid test, record the amount of time from the start of the test until the robot shut off. Also record the SOC of the two batteries.
- 13. If an invalid test, note the error or conditions which resulted in the end of test.

Maximum Normal Speed Test, +50 C

- 1. Measure and record State of Charge on 2 fully charged BB-2590 batteries (NSN 6140-01-490-4316, 6.8 Ah @ 28.8 V).
- 2. Place loading device, UUT and the 2 batteries inside the temperature chamber. The batteries are not to be installed in the UUT at this time.
- 3. Install ambient temperature sensor inside the chamber to measure inside air temperature. Rate of datalogging should be at least 0.1 Hz.
- 4. Monitor and log the power bus voltage of the platform.
- 5. Bring temperature of chamber to +50 C and soak UUT and batteries for 2 hours.
- 6. Begin logging of data, monitoring power bus voltage.
- 7. Power on the UUT's Operator Control Unit (OCU). Verify OCU is completely powered on before proceeding to the next step.
- 8. Open the chamber for no more than 1-minute maximum; install batteries into the UUT and power on UUT.
- 9. Connect and verify communication to the UUT
- 10. Hold the robot speed at 100% maximum platform speed in Normal mode on level ground. This speed will be kept constant for the entire test.
- 11. Test is completed when robot shuts off due to loss of battery power. Any other end of test results in an invalid test.
- 12. If a valid test, record the amount of time from the start of the test until the robot shut off. Also record the SOC of the two batteries.
- 13. If an invalid test, note the error or conditions which resulted in the end of test.

Maximum Fast Speed Test, -20 C

- 1. Measure and record State of Charge on 2 fully charged BB-2590 batteries (NSN 6140-01-490-4316, 6.8 Ah @ 28.8 V).
- 2. Place loading device, UUT and the 2 batteries inside the temperature chamber. The batteries are not to be installed in the UUT at this time.
- 3. Install ambient temperature sensor inside the chamber to measure inside air temperature. Rate of datalogging should be at least 0.1 Hz.
- 4. Monitor and log the power bus voltage of the platform.
- 5. Bring temperature of chamber to -20 C and soak UUT and batteries for 2 hours.
- 6. Begin logging of data, monitoring power bus voltage.
- 7. Power on the UUT's Operator Control Unit (OCU). Verify OCU is completely powered on before proceeding to the next step.
- 8. Open the chamber for no more than 1-minute maximum; install batteries into the UUT and power on UUT.
- 9. Connect and verify communication to the UUT

- 10. Hold the robot speed at 100% maximum platform speed in Fast mode on level ground. This speed will be kept constant for the entire test.
- 11. Test is completed when robot shuts off due to loss of battery power. Any other end of test results in an invalid test.
- 12. If a valid test, record the amount of time from the start of the test until the robot shut off. Also record the SOC of the two batteries.
- 13. If an invalid test, note the error or conditions which resulted in the end of test.

Maximum Fast Speed Test, +25 C

- 1. Measure and record State of Charge on 2 fully charged BB-2590 batteries (NSN 6140-01-490-4316, 6.8 Ah @ 28.8 V).
- 2. Place loading device, UUT and the 2 batteries inside the temperature chamber. The batteries are not to be installed in the UUT at this time.
- 3. Install ambient temperature sensor inside the chamber to measure inside air temperature. Rate of datalogging should be at least 0.1 Hz.
- 4. Monitor and log the power bus voltage of the platform.
- 5. Bring temperature of chamber to +25 C and soak UUT and batteries for 2 hours.
- 6. Begin logging of data, monitoring power bus voltage.
- 7. Power on the UUT's Operator Control Unit (OCU). Verify OCU is completely powered on before proceeding to the next step.
- 8. Open the chamber for no more than 1-minute maximum; install batteries into the UUT and power on UUT.
- 9. Connect and verify communication to the UUT
- 10. Hold the robot speed at 100% maximum platform speed in Fast mode on level ground. This speed will be kept constant for the entire test.
- 11. Test is completed when robot shuts off due to loss of battery power. Any other end of test results in an invalid test.
- 12. If a valid test, record the amount of time from the start of the test until the robot shut off. Also record the SOC of the two batteries.
- 13. If an invalid test, note the error or conditions which resulted in the end of test.

Maximum Fast Speed Test, +50 C

- 1. Measure and record State of Charge on 2 fully charged BB-2590 batteries (NSN 6140-01-490-4316, 6.8 Ah @ 28.8 V).
- 2. Place loading device, UUT and the 2 batteries inside the temperature chamber. The batteries are not to be installed in the UUT at this time.
- 3. Install ambient temperature sensor inside the chamber to measure inside air temperature. Rate of datalogging should be at least 0.1 Hz.
- 4. Monitor and log the power bus voltage of the platform.
- 5. Bring temperature of chamber to +50 C and soak UUT and batteries for 2 hours.
- 6. Begin logging of data, monitoring power bus voltage.

- 7. Power on the UUT's Operator Control Unit (OCU). Verify OCU is completely powered on before proceeding to the next step.
- 8. Open the chamber for no more than 1-minute maximum; install batteries into the UUT and power on UUT.
- 9. Connect and verify communication to the UUT
- 10. Hold the robot speed at 100% maximum platform speed in Fast mode on level ground. This speed will be kept constant for the entire test.
- 11. Test is completed when robot shuts off due to loss of battery power. Any other end of test results in an invalid test.
- 12. If a valid test, record the amount of time from the start of the test until the robot shut off. Also record the SOC of the two batteries.
- 13. If an invalid test, note the error or conditions which resulted in the end of test.

TARDEC Battery Rundown Test Form

PackBot Performance Test

Start Date	
Start Time	
Robot Serial Number	
Tester Name	
Chamber Temperature (C)	
Test Type	
Trial Number	
Test Number	
Data File Name	
Left Front Battery S/N	
Starting SOC (%)	
Ending SOC (%)	
Left Front Battery S/N	
Starting SOC (%)	
Ending SOC (%)	
Valid Test?	
Did the UUT remain in chamber	
for at least 2 hours before start of	
test?	
Did the data logger start recording	
prior to powering on the UUT?	
Was the battery SOC verified	
before installing the batteries in	
the UUT?	
Did the batteries remain	
uninstalled for at least 2 hours	
before the start of test?	
Notes	